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Neuroimaging-based clinical diagnostic

● Goal: classify patient's condition over time, for example during medication
trial (getting better/worse?)

healthy

pathological

time

cond
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Neuroimaging-based clinical diagnostic

● Goal: classify patient's condition over time, for example during medication
trial (getting better/worse?)

● Structural data? Depends on disease (not for depression, schizophrenia, ...)

wikipedia



8

Limitations of SC as biomarker

● Anatomical SC = infrastructure; does not take into account synaptic
receptors, neuromodulators, etc.

● Good to study strokes, Alzheimer disease, etc.

● Not suitable to explore task-specifc brain communication

● Water supply network analogy: size of tubes ≠ how much each tap is
open (which determines the fow)
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Resting-state fMRI activity refects pathologies
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Outline

● Connectivity measures for fMRI data

● Identifcation of task/subject using EC-based classifcation

● Network theory

● Reference: Gilson et al. (bioRxiv) “MOU-EC: model-based whole-
brain efective connectivity to extract biomarkers for brain dynamics
from fMRI data and study distributed cognition”; 
http://doi.org/10.1101/531830

● Open-access preprints on http://matthieugilson.eu/publications.html

● Code: http://github.com/MatthieuGilson/pyMOU

● HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

http://doi.org/10.1101/531830
http://matthieugilson.eu/publications.html
http://github.com/MatthieuGilson/pyMOU
http://collab.humanbrainproject.eu/#/collab/48372/
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fMRI time series

● Where is information in fMRI signals?

● What is their structure?

Quantitative methods for fMRI analysis
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Blood-oxygen-level-dependent (BOLD) signals

● Logothetis et al. (2001) Neurophysiological investigation of the basis of the fMRI
signal. Nature 

● Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage
● Logothetis (2012) What We Can and What We Can’t Do with fMRI. Nat Neurosci

Neuronal activity

Changes in
blood fow

BOLD/fMRI signals

1 voxel:
~ 1 mm3

> 106 neurons
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BOLD correlations: functional connectivity (FC)

● Even at rest, distant brain areas exhibit correlated BOLD activity
● PCA/ICA applied on BOLD signals (but also EEG and MEG) reveals

resting-state networks

Raichle, Trend Cog Sci (2010);
Mantini et al., PNAS (2007)
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BOLD correlations: functional connectivity (FC)

● Even at rest, distant brain areas exhibit correlated BOLD activity
● PCA/ICA applied on BOLD signals (but also EEG and MEG) reveals

resting-state networks
● FC = superposition of RSN expression over time
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Dynamic functional connectivity

● Measure of calculated using sliding window (also using Hilbert transform)
● Study of transition between brain “activity states”
● Assumption of stationarity within sliding window (timescale of 1 minute)

Hutchison et al. 2013 Neuroimage
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Temporal structure in BOLD signals

● Shorter time scale (BOLD resolution = 1 TR ~ 2 seconds)

● Lag structure (TD matrix) with early/late ROIs

Mitra et al.
2015 eLife
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Typology of measures
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Traditional FC

● FC evaluated using Pearson correlation

● Underlying model: graphical model = Gaussian variables

● No time involved: time series as succession of independent
samples

● Structure determined by 2nd-order statistics (covariances
without time lag: blue arrows only)

xi

xj
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Observed activity versus model inversion

Observed correlations

Interactions that explain
observed correlations
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Observed correlations

Interactions that explain
observed correlations

Observed activity versus model inversion

WITH TIME LAG FOR MAR
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Typology of measures
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“Why a model?”

● Every connectivity measure implies a model

● Model as hypothesis
– phenomenological model → characterize data structure

– mechanistic model → assemble biophysical mechanisms

● Better know hypotheses implied by choice of model
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Whole-brain modeling

● Observable of BOLD signals
● Choice for regions of interest (ROIs) and parcellation

fMRI/BOLD signals
Whole-brain parcellation
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Dynamic causal model (DCM)

Friston et al. (2003) Dynamic Causal Modelling. Neuroimage

Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage

Friston (2011) Functional and Efective Connectivity: A Review. Brain Connect

Frässle et al. (2017) Regression DCM for fMRI. Neuroimage

● Neural dynamics
● Hemodynamics
● Initially a-priori selected ROIs;

now whole brain version
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Efective connectivity (EC) for DCM

● Directed connectivity between brain regions in
model

● Signifcantly strong connections?
● Changes in estimated weights across conditions?

Friston et al. (2003) Dynamic Causal Modelling. Neuroimage

Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage

Friston (2011) Functional and Efective Connectivity: A Review. Brain Connect

Frässle et al. (2017) Regression DCM for fMRI. Neuroimage
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Our model: goal is to capture spatio-temporal
structure of whole-brain BOLD

DTI

2 FC matrices:
● covariances without time shift
● covariances with time shift (1 TR)

Region of interest (ROI)
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DTI

2 ways to use model:
● Bottom-up → simulate and explore qualitatively behavior
● Top-down → “project” data on space of model parameters

MOU-EC to capture brain “dynamical state”
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MOU-EC to capture brain “dynamical state”

DTI

directed
matrix of

interactions
between

ROIs

● Phenomenological dynamic model
● 70-100 ROIs → 1000-3000 EC weights

Gilson et al. PLoS Comput Biol 2016



  

Mode-based approach for classifcation
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wikipedia

Mode-based approach for classifcation



  

● Discriminate time series: means or second-order statistics?

Toy model: single autoregressive process
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● Discriminate time series: means or second-order statistics?
● Model inversion versus observed covariance

c1=ac0

x t+1=a x t+ζt

c0= s2

1−a2

s= ζt ζ t 〉

Toy model: single autoregressive process



  

● Discriminate time series: means or second-order statistics?
● Model inversion versus observed covariance

c1=ac0

x t+1=a x t+ζt

c0= s2

1−a2

p~10-10

p~10-20

p~10-10

c0

s

a

s= ζt ζ t 〉

Toy model: single autoregressive process
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Summary for connectivity measures

● Model as hypothesis on data structure or underlying neuronal
dynamics

– Every connectivity measure implies a model (phenomenological
or more mechanistic)

● Value of model

– Goodness of ft to reproduce data

– Extracting information from data: biomarker

– Interpretability: mechanistic explanation of data
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Summary for connectivity measures

● Model as hypothesis on data structure or underlying neuronal
dynamics

– Every connectivity measure implies a model (phenomenological
or more mechanistic)

● Value of model

– Goodness of ft to reproduce data

– Extracting information from data: biomarker

– Interpretability: mechanistic explanation of data

● What is your question?
– Individualized model for patient

– Common traits in model for group of subjects to study cognition
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Outline

● Connectivity measures for fMRI data

● Identifcation of task/subject using EC-based classifcation

● Network theory

● Reference: Gilson et al. (bioRxiv) “MOU-EC: model-based whole-
brain efective connectivity to extract biomarkers for brain dynamics
from fMRI data and study distributed cognition”; 
http://doi.org/10.1101/531830

● Open-access preprints on http://matthieugilson.eu/publications.html

● Code: http://github.com/MatthieuGilson/pyMOU

● HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

http://doi.org/10.1101/531830
http://matthieugilson.eu/publications.html
http://github.com/MatthieuGilson/pyMOU
http://collab.humanbrainproject.eu/#/collab/48372/
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fMRI time series

● Classifcation

● Cross-validation

● Extract biomarker

Do connectivity measures capture
task-relevant information?
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Statistical testing versus machine learning

ECij

cond1 cond2
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Statistical testing versus machine learning
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Multiple comparison correction
for 1000+ weight estimates?
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Statistical testing versus machine learning

Eci'j'

ECij

Eci'j'

cond

Multiple comparison correction
for 1000+ weight estimates?

Generalization
over new subjects

ECij

cond1 cond2
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Train-test procedure for cross-validation

● Data divided in train
set and test set

● Calculate accuracy on
test set

● Repeat for various
splits of data

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson (2018) Neuroimage

Varoquaux et al. Neuroimage 2018; Python library scikit-learn (Thirion's team  in SP2)

● Multinomial linear regression (MLR) 
● 1-nearest-neighbor (1NN)
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Classifcation of tasks

Gilson et al. bioRxiv

● Data from D Mantini and M
Corbetta (Hlinka et al.
Neuroimage 2011)

● 22 subjects

● 5 sessions/runs:

– 2 for rest

– 3 for movie viewing (distinct
parts of movie)
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● Movie viewing versus
rest is easy: almost
any connectivity
measure works

Gilson et al. bioRxiv

Classifcation of tasks
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● Movie viewing versus
rest is easy: almost
any connectivity
measure works

● Rest, M1, M2 and M3:
more difcult: EC and
FC work best

Gilson et al. bioRxiv

Classifcation of tasks
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Biomarker: signature subnetwork

● Informative EC/FC links that support correct classifcation

Gilson et al. bioRxiv
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Biomarker: signature subnetwork

● Informative EC/FC links that support correct classifcation

● Machine learning well suited for multivariate features (connectivity)
and multiple labels (conditions)

Gilson et al. bioRxiv
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Hierarchy of cognitive tasks

● Mapping structure of
connectivity measure with
structure of cognitive states

● See also unsupervised
techniques (clustering)

Gilson et al. bioRxiv
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Classifcation of subjects

Gilson et al. bioRxiv

● Movie viewing versus
rest is easy: almost
any connectivity
measure works

● Rest, M1, M2 and M3:
more difcult: EC and
FC work best

● Subjects: EC and PC
work best
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EC/FC as individual fngerprint

V Pallarés et al., Neuroimage 2018

Subject identifcation:
● Finn et al. (2015) Nat

Neurosci; 
● special issue “Individual

Subject Prediction” in
Neuroimage

● Data from Simone Kühn

● 6 healthy subjects, 50 sessions

● EC is better than FC for discriminating subjects
using resting-state fMRI

– more robust to day-to-day variability
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Twofold classifcation subject-task

● BOLD signals are contaminated by individual traits

● Issue when datasets involve distinct subjects (distinct
cohort for healthy control and neuropathology)

● But even in general with same subjects

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson
Neuroimage 2018
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Twofold classifcation subject-task

● Task: movie viewing
versus rest

● “Orthogonality” between
support networks:
statistical test for overlap

● Mainly inter-hemispheric
EC links for tasks, many
links within left
hemisphere for subjects

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson
Neuroimage 2018
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Other dataset with 4 tasks + rest

● To mix or not to mix
subject information in
train and test sets

● Beware of infated
results for classifcation!

S Benitez-Stulz et al., submitted
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Take-home messages for classifcation

● Need adequate method to disentangle contributions from
subject variability and condition variability

subj

cond
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Take-home messages for classifcation

● Need adequate method to disentangle contributions from
subject variability and condition variability

● Temporal information matters (EC for subject identifcation)

● Connectivity measures should be benchmarked with many
task conditions to verify generalization capability

● Adequate classifer (MLR good for feature selection) and
cross-validation method

subj

cond

subj

cond

subj

cond
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Current biomarkers and future improvements

wikipedia
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Current biomarkers and future improvements
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Outline

● Connectivity measures for fMRI data

● Identifcation of task/subject using EC-based classifcation

● Network theory

● Reference: Gilson et al. (bioRxiv) “MOU-EC: model-based whole-
brain efective connectivity to extract biomarkers for brain dynamics
from fMRI data and study distributed cognition”; 
http://doi.org/10.1101/531830

● Open-access preprints on http://matthieugilson.eu/publications.html

● Code: http://github.com/MatthieuGilson/pyMOU

● HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

http://doi.org/10.1101/531830
http://matthieugilson.eu/publications.html
http://github.com/MatthieuGilson/pyMOU
http://collab.humanbrainproject.eu/#/collab/48372/
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fMRI time series

Network metrics as summaries of connectivity

graph
● clustering
● complexity

measure
● etc.



65

Network theory

● Gorka Zamora-López: Galib Python library

● Compare network from data with references
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Network theory for MOU-EC

● Detect communities in brain network

● Merging of communities following perturbation (stimulation)

– from segregated to global integration

1   2   3  4

Gilson et al. Neuroimage
(in review)

4

3

2

1  
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Toolbox for whole-brain fMRI analysis

● Interesting playground provided by fMRI: dynamics (estimation),
statistics / machine learning (classifcation), network theory

– Linear algebra: well adapted for large networks

● Quantitative characterization of brain “states”

● Network-oriented analysis, suitable for large datasets

● Application to cognition (SP2-SP3) and neuropathologies (SP8)
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Code: http://github.com/MatthieuGilson/pyMOU
HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

http://github.com/MatthieuGilson/pyMOU
http://collab.humanbrainproject.eu/#/collab/48372/

