Biomarkers extracted from fMRI data for cognition and neuropathologies

Matthieu Gilson and Gorka Zamora-López

Center for Brain and Cognition, Univ Pompeu Fabra, Barcelona (Spain) Human Brain Project – SP4 / WP4.4

Vicente Pallarés, Andrea Insabato, Ana Sanjuán Gorka Zamora-López, Nikos Kouvaris, Katharina Glomb, Gustavo Deco

Human Brain Project

Biomarker for cognition: Task-evoked fMRI

Brain activity recorded via scanner

time (s)

Classification of cognitive states

Condition 1 Condition 2

measure dimension

Classification of cognitive states

useless measure (or data...)

Neuroimaging-based clinical diagnostic

 Goal: classify patient's condition over time, for example during medication trial (getting better/worse?)

Neuroimaging-based clinical diagnostic

- Goal: classify patient's condition over time, for example during medication trial (getting better/worse?)
- Structural data? Depends on disease (not for depression, schizophrenia, ...)

wikipedia

Limitations of SC as biomarker

- Anatomical SC = infrastructure; does not take into account synaptic receptors, neuromodulators, etc.
- Good to study strokes, Alzheimer disease, etc.
- Not suitable to explore task-specific brain communication
- Water supply network analogy: size of tubes ≠ how much each tap is open (which determines the flow)

Resting-state fMRI activity reflects pathologies

Curr Opin Neurol. 2008 Aug;21(4):424-30. doi: 10.1097/WCO.0b013e328306f2c5.

Resting-state functional connectivity in neuropsychiatric disorders.

Greicius M1.

Author information

Abstract

PURPOSE OF REVIEW: This review considers recent advances in the application of resting-state functional magnetic resonance imaging to the study of neuropsychiatric disorders.

SUMMARY: Resting-state functional magnetic resonance imaging has made some strides in the clinical realm but significant advances are required before it can be used in a meaningful way at the single-patient level.

Outline

- Connectivity measures for fMRI data
- Identification of task/subject using EC-based classification
- Network theory
- Reference: Gilson et al. (bioRxiv) "MOU-EC: model-based wholebrain effective connectivity to extract biomarkers for brain dynamics from fMRI data and study distributed cognition"; http://doi.org/10.1101/531830
- Open-access preprints on http://matthieugilson.eu/publications.html
- Code: http://github.com/MatthieuGilson/pyMOU
- HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

Quantitative methods for fMRI analysis

- Where is information in fMRI signals?
- What is their structure?

Blood-oxygen-level-dependent (BOLD) signals

BOLD/fMRI signals

- Logothetis et al. (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature
- Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage
- Logothetis (2012) What We Can and What We Can't Do with fMRI. Nat Neurosci

BOLD correlations: functional connectivity (FC)

Raichle, Trend Cog Sci (2010); Mantini et al., PNAS (2007)

- Even at rest, distant brain areas exhibit correlated BOLD activity
- PCA/ICA applied on BOLD signals (but also EEG and MEG) reveals resting-state networks

BOLD correlations: functional connectivity (FC)

- Even at rest, distant brain areas exhibit correlated BOLD activity
- PCA/ICA applied on BOLD signals (but also EEG and MEG) reveals resting-state networks
- FC = superposition of RSN expression over time

Dynamic functional connectivity

- Measure of calculated using sliding window (also using Hilbert transform)
- Study of transition between brain "activity states"
- Assumption of stationarity within sliding window (timescale of 1 minute)

Temporal structure in BOLD signals

- Shorter time scale (BOLD resolution = 1 TR ~ 2 seconds)
- Lag structure (TD matrix) with early/late ROIs

Typology of measures

	Without time	"Linear" in time domain	"Linear" in frequency domain	Others; non-linear
Nodal measure	Variance	Auto- covariance	Power spectrum	
Connectivity measures and estimates	Covariances, Pearson correlation	Cross- covariances	Cross- spectrum, coherence	Mutual information
	Partial correlation	Auto- regressive process	Partial coherence	Conditional mutual information

Traditional FC

- FC evaluated using Pearson correlation
- Underlying model: graphical model = Gaussian variables
- No time involved: time series as succession of independent samples
- Structure determined by 2nd-order statistics (covariances without time lag: blue arrows only)

Observed activity versus model inversion

Observed correlations

Interactions that explain observed correlations

Observed activity versus model inversion

Observed correlations WITH TIME LAG FOR MAR

Interactions that explain observed correlations

Typology of measures

	Without time	"Linear" in time domain	"Linear" in frequency domain	Others; non-linear
Nodal measure	Variance	Auto- covariance	Power spectrum	
Connectivity measures	Covariances, Pearson correlation	Cross- covariances	Cross- spectrum, coherence	Mutual information
and estimates	Partial correlation	Auto- regressive process	Partial coherence	Conditional mutual information
	MOD			

21

"Why a model?"

- Every connectivity measure implies a model
- Model as hypothesis
 - phenomenological model \rightarrow characterize data structure
 - mechanistic model \rightarrow assemble biophysical mechanisms
- Better know hypotheses implied by choice of model

Whole-brain modeling

fMRI/BOLD signals

Whole-brain parcellation

• Choice for regions of interest (ROIs) and parcellation

Dynamic causal model (DCM)

Neural dynamics

Friston et al. (2003) Dynamic Causal Modelling. Neuroimage Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage Friston (2011) Functional and Effective Connectivity: A Review. Brain Connect Frässle et al. (2017) Regression DCM for fMRI. Neuroimage

Effective connectivity (EC) for DCM

- Directed connectivity between brain regions in model
- Significantly strong connections?
- Changes in estimated weights across conditions?

Friston et al. (2003) Dynamic Causal Modelling. Neuroimage Stephan et al. (2004) Biophysical models of fMRI response. Neuroimage Friston (2011) Functional and Effective Connectivity: A Review. Brain Connect Frässle et al. (2017) Regression DCM for fMRI. Neuroimage

Our model: goal is to capture spatio-temporal structure of whole-brain BOLD

ROI 1-45: left hemisphere ROI 46-90: right hemisphere

Region of interest (ROI)

2 FC matrices:

- covariances without time shift
- covariances with time shift (1 TR)

MOU-EC to capture brain "dynamical state"

- 2 ways to use model:
- Bottom-up \rightarrow simulate and explore qualitatively behavior
- Top-down → "project" data on space of model parameters

MOU-EC to capture brain "dynamical state"

- Phenomenological dynamic model
- 70-100 ROIs \rightarrow 1000-3000 EC weights

Gilson et al. PLoS Comput Biol 2016

Mode-based approach for classification

Mode-based approach for classification

• Discriminate time series: means or second-order statistics?

• Discriminate time series: means or second-order statistics?

- Discriminate time series: means or second-order statistics?
- Model inversion versus observed covariance

- Discriminate time series: means or second-order statistics?
- Model inversion versus observed covariance

Summary for connectivity measures

- Model as hypothesis on data structure or underlying neuronal dynamics
 - Every connectivity measure implies a model (phenomenological or more mechanistic)
- Value of model
 - Goodness of fit to reproduce data
 - Extracting information from data: biomarker
 - Interpretability: mechanistic explanation of data

Summary for connectivity measures

- Model as hypothesis on data structure or underlying neuronal dynamics
 - Every connectivity measure implies a model (phenomenological or more mechanistic)
- Value of model
 - Goodness of fit to reproduce data
 - Extracting information from data: biomarker
 - Interpretability: mechanistic explanation of data
- What is your question?
 - Individualized model for patient
 - Common traits in model for group of subjects to study cognition

Outline

- Connectivity measures for fMRI data
- Identification of task/subject using EC-based classification
- Network theory
- Reference: Gilson et al. (bioRxiv) "MOU-EC: model-based wholebrain effective connectivity to extract biomarkers for brain dynamics from fMRI data and study distributed cognition"; http://doi.org/10.1101/531830
- Open-access preprints on http://matthieugilson.eu/publications.html
- Code: http://github.com/MatthieuGilson/pyMOU
- HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

Do connectivity measures capture task-relevant information?

- Classification
- Cross-validation
- Extract biomarker

cond1 cond2

cond1 cond2

Multiple comparison correction for 1000+ weight estimates?

Multiple comparison correction for 1000+ weight estimates? EC_{ii}

Multiple comparison correction for 1000+ weight estimates?

Multiple comparison correction for 1000+ weight estimates?

Generalization over new subjects

Train-test procedure for cross-validation

- Data divided in train set and test set
- Calculate accuracy on test set
- Repeat for various splits of data

- Multinomial linear regression (MLR)
- 1-nearest-neighbor (1NN)

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson (2018) Neuroimage Varoquaux et al. Neuroimage 2018; Python library scikit-learn (Thirion's team in SP2) 44

Classification of tasks

- Data from D Mantini and M Corbetta (Hlinka et al. Neuroimage 2011)
- 22 subjects
- 5 sessions/runs:
 - 2 for rest
 - 3 for movie viewing (distinct parts of movie)

Classification of tasks

 Movie viewing versus rest is easy: almost any connectivity measure works **B** 2-task identification (movie versus rest)

Classification of tasks

 Movie viewing versus rest is easy: almost any connectivity measure works

 Rest, M1, M2 and M3: more difficult: EC and FC work best **B** 2-task identification (movie versus rest)

4-task identification

Biomarker: signature subnetwork

• Informative EC/FC links that support correct classification

A Support network of informative links 51 52 53 54 ⁶² 63 64 65 0 1 - 2 gray: 2 tasks only (rest versus movie) black: 2 tasks and 4 tasks

red: 4 tasks only

Biomarker: signature subnetwork

- Informative EC/FC links that support correct classification
- Machine learning well suited for multivariate features (connectivity) and multiple labels (conditions)

B

A Support network of informative links

red: 4 tasks only

Classification ranking versus statistical significance

Gilson et al. bioRxiv

Hierarchy of cognitive tasks

- Mapping structure of connectivity measure with structure of cognitive states
- See also unsupervised techniques (clustering)

Classification of subjects

- Movie viewing versus rest is easy: almost any connectivity measure works
- Rest, M1, M2 and M3: more difficult: EC and FC work best
- Subjects: EC and PC work best

Gilson et al. bioRxiv

EC/FC as individual fingerprint

- Data from Simone Kühn
- 6 healthy subjects, 50 sessions
- EC is better than FC for discriminating subjects using resting-state fMRI
 - more robust to day-to-day variability

Subject identification:

- Finn et al. (2015) Nat Neurosci;
- special issue "Individual Subject Prediction" in Neuroimage

Twofold classification subject-task

- BOLD signals are contaminated by individual traits
- Issue when datasets involve distinct subjects (distinct cohort for healthy control and neuropathology)
- But even in general with same subjects

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson Neuroimage 2018

Twofold classification subject-task

A

Support network of **subject** classification

В

Support network of **condition** classification

- Task: movie viewing versus rest
- "Orthogonality" between support networks: statistical test for overlap
- Mainly inter-hemispheric EC links for tasks, many links within left hemisphere for subjects

V Pallarés, A Insabato, A Sanjuan, S Kühn, D Mantini, G Deco, M Gilson Neuroimage 2018

Other dataset with 4 tasks + rest

0.3

60 80 Window length (s)

100

120

- To mix or not to mix subject information in train and test sets
- Beware of inflated results for classification!

55 S Benitez-Stulz et al., submitted

40

) 80 Window length (s)

100

60

gFC

120

- Temporal information matters (EC for subject identification)
- Connectivity measures should be benchmarked with many task conditions to verify generalization capability
- Adequate classifier (MLR good for feature selection) and cross-validation method

Current biomarkers and future improvements

wikipedia

Current biomarkers and future improvements

wikipedia

Current biomarkers and future improvements

Outline

- Connectivity measures for fMRI data
- Identification of task/subject using EC-based classification
- Network theory
- Reference: Gilson et al. (bioRxiv) "MOU-EC: model-based wholebrain effective connectivity to extract biomarkers for brain dynamics from fMRI data and study distributed cognition"; http://doi.org/10.1101/531830
- Open-access preprints on http://matthieugilson.eu/publications.html
- Code: http://github.com/MatthieuGilson/pyMOU
- HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

Network metrics as summaries of connectivity

Network theory

- Gorka Zamora-López: Galib Python library
- Compare network from data with references

Regular Lattice

Random Graph

100

degree

120

80

140

0.05

0.03

0.01

(k) 0.02

Network theory for MOU-EC

- Detect communities in brain network
- Merging of communities following perturbation (stimulation)
 - from segregated to global integration

Toolbox for whole-brain fMRI analysis

- Interesting playground provided by fMRI: dynamics (estimation), statistics / machine learning (classification), network theory
 - Linear algebra: well adapted for large networks
- Quantitative characterization of brain "states"
- Network-oriented analysis, suitable for large datasets
- Application to cognition (SP2-SP3) and neuropathologies (SP8)

C subnetwork alteration

Code: http://github.com/MatthieuGilson/pyMOU HBP collab: http://collab.humanbrainproject.eu/#/collab/48372/

Universitat Pompeu Fabra *Barcelona*

Human Brain Project

