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Outline

● Historical perspective on learning in neuronal systems

● From Hebbian learning to spike-timing-dependent plasticity

● Weight dynamics and “information” representations:

– Principal component analysis (PCA)

– Detection of spike patterns by STDP

– Neuronal assemblies in recurrent networks

● From biological learning to machine learning:
– Unsupervised vs supervised vs reinforcement learning



3

A bit of history

Ramon y Cajal 1905

● Paul Broca (1796-1881): 
localization of function, for 
example language

● Karl Lashley (1890-1958): 
storage of memory in 
brain regions (engram)

● How are brain functions 
(psychology) implemented 
in the brain?

● How to learn functions?
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Ramon y Cajal 1905

● Paul Broca (1796-1881): 
localization of function, for 
example language

● Karl Lashley (1890-1958): 
storage of memory in 
brain regions (engram)

● How are brain functions 
(psychology) implemented 
in the brain?

● How to learn functions?

Hebb (1949): “When an axon of cell A is near enough to excite a cell B 
and repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells such that 
A's efficiency, as one of the cells firing B, is increased”
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Learning in neuronal systems: where and what?
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Learning in neuronal systems: where and what?

Orientation columns in 
primary visual cortex (V1)

Long-term memory in 
prefrontal cortex

wikipedia

Locomotion in 
motor cortex 
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Reinforcement 
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Formalizing experimental observations

Helmstaedter BRR 2007
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Formalizing experimental observations

x y= f (w x)

Helmstaedter BRR 2007

w

target 
(output) 
neuron

source 
(input) 
neuron
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Synaptic plasticity

w

Models of neuronal learning
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Models of neuronal learning

Tuning function
e.g. pattern
classification

Synaptic plasticity

w
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Hebb's postulate or rule

● D Hebb The Organization fo Behavior 1949: how does environment 
and experience shape brain structure and function?

● “When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells such 
that A's efficiency, as one of the cells firing B, is increased”
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Experimental evidence from rat hippocampus

Kelso PNAS 1986
see also Jaffe J Neurophysiol 
1990, Antonov Neuron 2003
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Spike timing matters!

pre-post
● Markram Science 1997

● Gerstner Science 1999
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Spike timing matters!
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Spike timing matters!

pre-post post-pre

Markram J Syn Neurosci 2011

Spike-timing-dependent plasticity (STDP):
temporally Hebbian, “takes part in firing it”

t A−t B=t pre−t post

B

A

ww

● Markram Science 1997

● Gerstner Science 1999
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Many STDP windows exist, yielding various timescales

Abbott and Nelson, 
Nat Neurosci 2000

Froemke Nature 2005
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Biophysical models and other mechanisms
● Weight dependence: van Rossum J Neurosci 2000, Morrison Neural Comput 2007

● Calcium-based: Shouval Biol Cybern 2002; Standage PLoS ONE 2014

● Post-synaptic voltage dependence: Clopath Nat Neurosci 2010

● Inhibitory plasticity: Vogels Science 2011

● Neuronal morphology: Froemke Nature 2005

● Neuromodulation: Brzosko Neuron 2019

si(t)

s j (t )

w ji

Feldman Neuron (2012)
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Summary for experimental evidence and 
modeling of synaptic plasticity

● Complex dependencies upon recent spike timing, ion 
concentrations, etc.

● But most experiments are in vitro! (see supplementary slides)

– Many STDP protocols involve 60 repeated pairing to obtain 
observable weight change

– Positive replications of results in-vivo still scarce...

● Monosynaptic plasticity is not the only mechanism at play
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Summary for experimental evidence and 
modeling of synaptic plasticity

● Complex dependencies upon recent spike timing, ion 
concentrations, etc.

● But most experiments are in vitro! (see supplementary slides)

– Many STDP protocols involve 60 repeated pairing to obtain 
observable weight change

– Positive replications of results in-vivo still scarce...

● Monosynaptic plasticity is not the only mechanism at play

● Questions:

– What matters for neuronal function?

– Effect in network?

– Need to formalize plasticity update (i.e. simplified model) so we 
can build typology of functional effects
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Stimulus represented in rate patterns

Tan J Neurosci 2011

Orientation selectivity 
of V1 neuron

Orientation selectivity 
of its inputs (LGN)

 0            180          360

stimulus orientation



33

Stimulus represented in rate patterns

Tan J Neurosci 2011

Orientation selectivity 
of V1 neuron

Orientation selectivity 
of its inputs (LGN)

 0            180          360

stimulus orientation

LGN

V1



34

Stimulus represented in rate patterns

Tan J Neurosci 2011

Orientation selectivity 
of V1 neuron

Orientation selectivity 
of its inputs (LGN)

 0            180          360

stimulus orientation

LGN

V1



35

On abstract level: rate-pattern recognition

most frequently 
repeated pattern

less frequently 
repeated pattern
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Weight dynamics for rate neuron

x j y

xi

x...

ẇi∝ xi y

wi
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Weight dynamics for rate neuron

x j y=∑ j
w j x j

x i

x...

wi

ẇ=C w C ij= xi x j 〉with

ẇi∝ xi y=∑ j
x i x jw j
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Weight dynamics for rate neuron

x j y=∑ j
w j x j

x i

x...

wi

ẇ=C w C ij= xi x j 〉with
Hebbian dynamics is 
intrinsically unstable!

Main direction 
of growth w∼eλmax t [V max .w (t=0)]V max

ẇi∝ xi y=∑ j
x i x jw j
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Weight dynamics for rate neuron

ẇ=C w C ij= xi x j 〉with
Hebbian dynamics is 
intrinsically unstable!

Main direction 
of growth w∼eλmax t [V max .w (t=0)]V max

ẇi∝ xi y=∑ j
x i x jw j

..
.

..
.

p=0.3

p=0.7
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Stabilization by synaptic competition: Oja's rule

ẇi= y(xi− yw i)

Oja J Math Biol 1982
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Stabilization by synaptic competition: Oja's rule

stabilization effect

Oja J Math Biol 1982

∑ j
w j∼const

ẇi= y(xi− yw i)
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Stabilization by synaptic competition: Oja's rule

ẇi= y(xi− yw i)

..
.

..
.

p=0.3

p=0.7

∑ j
w j∼const

● Select dominating 
eigenvector of C

● Principal component 
analysis (PCA)



44

Outline

● Historical perspective on learning in neuronal systems

● From Hebbian learning to spike-timing-dependent plasticity

● Weight dynamics and “information” representations:

– Principal component analysis (PCA)

– Detection of spike patterns by STDP

– Neuronal assemblies in recurrent networks

● From biological learning to machine learning:
– Unsupervised vs supervised vs reinforcement learning



45

Unsupervised learning for detection of spike patterns

Masquelier PLoS ONE 2008

frozen Poisson spike pattern

s j (t )

si(t)

F

s...

wi

STDP learning window

ẇ ...=F (t pre−t post)−a pre

output neuron
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Masquelier PLoS ONE 2008

frozen Poisson spike pattern

output neuron becomes selective 
(LTP for synapses from early spikes)

Unsupervised learning for detection of spike patterns

ẇ ...=F (t pre−t post)−a pre
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Learning the full pattern, not just the start

Masquelier Neural Comput 2009
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s j (t )

si(t)

s...

wi

u(t ) ρ(t)=∑ j
w j [ϵ∗s j ](t)

P [u(t )=1]∝ρ(t )

Hawkes process, 
Poisson neuron

output

inputs

EPSP ρ(t)

u(t)

Maths for weight dynamics
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ẇi=∑t i , t post
F (t i−t post)

F

s j (t )

si(t)

s...

wi

u(t ) ρ(t)=∑ j
w j [ϵ∗s j ](t)

Hawkes process, 
Poisson neuron

Maths for weight dynamics
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ẇi=∑t i , t post
F (t i−t post)

=∫t∫τ
F (τ) si(t)u(t−τ)d τ d t

F

s j (t )

si(t)

s...

wi

u(t ) ρ(t)=∑ j
w j [ϵ∗s j ](t)

P [u(t )=1]∝ρ(t )

Hawkes process, 
Poisson neuron

Maths for weight dynamics
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C ij (τ)= si(t )s j (t−τ)〉

ẇi=∑t i , t post
F (t i−t post)

=∫t∫τ
F (τ) si(t)u(t−τ)d τ d t

=∑ j
w j∫τ

[F∗ϵ](τ)C i j(τ)d τ

F

s j (t )

si(t)

s...

wi

u(t ) ρ(t)=∑ j
w j [ϵ∗s j ](t)

P [u(t )=1]∝ρ(t )

Hawkes process, 
Poisson neuron

Maths for weight dynamics

spike-time correlogram
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ẇ=C̃ w

ẇi=∑t i , t post
F (t i−t post)

=∫t∫τ
F (τ) si(t)u(t−τ)d τ d t

=∑ j
w j∫τ

[F∗ϵ](τ)C i j(τ)d τ

F

s j (t )

si(t)

s...

wi

u(t ) ρ(t)=∑ j
w j [ϵ∗s j ](t)

P [u(t )=1]∝ρ(t )

Hawkes process, 
Poisson neuron

Maths for weight dynamics

C ij (τ)= si(t )s j (t−τ)〉

spike-time correlogram
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STDP selects early, dense and sharp spike clusters

Gilson PLoS Comput Biol 2011

competition between spike clusters (PCA on correlation structure)

ẇ=C̃ w−a pre

PCA becomes ICA with additional regularization:
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stimulus

Zenke Nat Comm 2015

STDP and neuron assemblies
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STDP and neuron assemblies

initial
situation

Gilson Biol Cybern 2009
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stimulus
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STDP and neuron assemblies

initial
situation

Gilson Biol Cybern 2009
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Weight dynamics in recurrent networks

Gilson Biol Cybern 2009

i

k

j

input

output
ẇij=∫τ

F (τ) s j (t )si(t−τ)〉d τ

ρi(t)=∑ j
w ij [ϵ∗s j ](t)+∑k

wik [ϵ∗sk ](t )

But si depends on sj too!

Echos in networks due to 
recurrent connections
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Correlation structure in recurrent networks

Gilson Biol Cybern 2009

input-input input-output output-output

τ=t input−toutput

input

output

ẇij=∫τ
F (τ)C (τ)d τ
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Correlation structure in recurrent networks

Gilson Biol Cybern 2009

input-input input-output output-output

input

output

τ=t input−toutput

ẇij=∫τ
F (τ)C (τ)d τ>0



61

Correlation structure in recurrent networks

Gilson Biol Cybern 2009

input-input input-output output-output

input

output

τ=t input−toutput

ẇij=∫τ
F (τ)C (τ)d τ>0
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Correlation structure in recurrent networks

Gilson Biol Cybern 2009

input-input input-output output-output

input

output

ẇij=∫τ
F (τ)C (τ)d τ<0

τ=t input−toutput
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STDP and neuron assemblies

Gilson Biol Cybern 2009

axonal delays dendritic delays

initial
situation
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Stability in recurrent networks with ongoing plasticity

stimulus

tSTDP on

tSTDP off

Zenke Nat Comm 2015
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Zenke Nat Comm 2015

ẇ=F ({t pre},{t post})−β(w−weq)r post
4

+α r pre

Stability in recurrent networks with ongoing plasticity
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Summary for plastic weight dynamics

● Learned weight structure represent the input statistics and 
shape the neuronal function (input-output mapping)

– implement selectivity to pattern

– create cell assemblies that receive correlated inputs

● Beware of weight instability!

– other mechanisms are necessary to stabilize learning, like 
heterosynaptic plasticity that models resource limitation
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Learning in neuronal systems

Orientation columns in 
primary visual cortex (V1)

Long-term memory in 
prefrontal cortex

wikipedia

Locomotion in 
motor cortex Unsupervised 

learning

Supervised 
learning

Reinforcement 
learning
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Types of learning

ẇi= y xi

ẇi=( ȳ A− y) xi
A ȳ A objective for input of class A

unsupervised 
(Hebbian, STDP)

supervised 
(delta rule, 
perceptron)
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Types of learning

ẇi= y xi

ẇi=( ȳ A− y) xi
A

ẇi=ϵ y xi ϵ modulator (dopamine, 
acetylcholine)

unsupervised 
(Hebbian, STDP)

supervised 
(delta rule, 
perceptron)

reinforcement 
learning

ȳ A objective for input of class A
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Reward-modulated STDP

Izhikevich Cereb Cortex 2007
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Reward-modulated STDP

Izhikevich Cereb Cortex 2007
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Presentation available on 
http://www.matthieugilson.eu

http://www.matthieugilson.eu/
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Supplementary material about STDP

● Experimental evidence of STDP: how rich should the model be?

● Weight dynamics and “information” representations:

– Ocular dominance and symmetry breaking

● Future challenges:
– Distributed information representations
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STDP: what do experiments really say?

from review Feldman Neuron (2012)
data: Bi and Poo (1998), Feldman (2000)

stochastic STDP model: Elliott (2008)

Weight change after 
60 pre-post pairings!

t post−t pre
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Beyond spike pairs

data: Sjostrom Neuron (2001)
model: Pfister J Neurosci (2006)
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Beyond spike pairs

data: Sjostrom Neuron (2001)
model: Pfister J Neurosci (2006)

STDP based on triplet of spikes 
in addition to spike pairs
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Supplementary material about STDP

● Experimental evidence of STDP: how rich should the model be?

● Weight dynamics and “information” representations:

– Ocular dominance and symmetry breaking

● Future challenges:
– Distributed information representations
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Ocular dominance

● Symmetric inputs from the two eyes

● How to specialize to one optical input only?

Hanganu J Neurosci 2006

Katz Science 1996

wikipedia
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Ocular dominance

● Symmetric inputs from the two eyes

● How to specialize to one optical input only?

● PCA cannot discriminate between the 2 dominating eigenvectors
..

.
..

.

p=0.5

p=0.5
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BCM rule

ẇi=ϕ( y)x i

ϕ( y)= y( y−θ)

Bienenstock, Cooper, Munro 
J Neurosci 1981

θ= y2 〉=∫t−T< t '< t
[ y (t ' )]2dt '

● Symmetric inputs from the two eyes

● How to specialize to one optical input only?

● PCA cannot discriminate between the 2 dominating eigenvectors
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Triplet STDP and BCM

Pfister J Neurosci 2006

enforces winner-take-all 
behavior: strong 

specialization and 
symmetry breaking
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Supplementary material about STDP

● Experimental evidence of STDP: how rich should the model be?

● Weight dynamics and “information” representations:

– Ocular dominance and symmetry breaking

● Future challenges:
– Distributed information representations
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Towards theory for distributed computations

Neuronal 
activation 

mechanisms

Information 
representation

Synaptic 
plasticity

Input-output 
mapping

Spiking 
statistics

Learning

D
y
n

a
m

ic
s
 

le
v
e
l

F
u

n
c
ti

o
n

a
l 

le
v
e
l



85

Neuronal information in high-order correlations

Gilson M, D Dahmen, Moreno-Bote 
R, Insabato A, Helias M
PLoS Comput Biol 2020

Gilson M, Pfister J-P (arXiv)
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Further reading on link with information theory
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