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Analysis of whole-brain effective connectivity

empirical FC from BOLD
empirical BOLD signals

silence listening rating (- iiv itefatiVeECéptir;ﬂ;atiOE
g e A to tune ECand Z suc
\ ' / W i A that model FC fits

i empirical FC

TR

FCOU.: zero-shift covariances

dynamica

model i 7
lerr right

effective connectivity (EC)

ROI 1-45: left hemisphere
ROI 46-90: right hemisphere

right
structural connectivity (SC)

Effective connectivity ~ signature of brain dynamics
(related to transitions of BOLD activity between ROIs)



Analysis of whole-brain effective connectivity

Matrix of effective connectivity:
« Changes across conditions

C score 2 score

ST 2

'I'I'
MT
BSTS
IP
FUS
LOCC
LING

www.biorxiv.org/content/early/2017/08/25/110015 3



Analysis of whole-brain effective connectivity

Matrix of effective connectivity:
« Changes across conditions
« Important and strong links

Weight significantly different from O

~ Granger causality analysis
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Matrix of effective connectivity:
« Changes across conditions
« Important and strong links
 Network effect
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Analysis of whole-brain effective connectivity
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« Changes across conditions
 Important and strong links
 Network effect
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Analysis of whole-brain effective connectivity

Matrix of effective connectivity:

« Network effect

How to make sense of the
multiple superposed paths
for the network dynamics?
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Outline

Non-parametric method to evaluate significance of estimated
weights

- multivariate autoregressive process (discrete time)
- www.biorxiv.org/content/early/2017/06/26/100669

Communicability to quantify network effect
- multivariate Ornstein-Uhlenbeck process (continuous time)

11



How to detect significantly strong interactions?

test stimuli
500-800msec

« Estimated connectivity from
multiunit activity from UTAH
electrode array (in monkey V1) TR Trees ot
from Alex Thiele (U Newcastle)

* Visual stimulus in a bottom-up
attention task

0 msec 400 msec 1300 msec
cue onset cue off test stimuli on

time relative to trial start

trial #1

trial #2

-0.

0.05
0.00 200 trials
-400 -200 0 200 400 600

time

www.biorxiv.org/content/early/2017/06/26/100669
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How to detect significantly strong interactions?

test stimuli
500-800msec

« Estimated connectivity from
multiunit activity from UTAH
electrode array (in monkey V1) TR Trees ot
from Alex Thiele (U Newcastle)

* Visual stimulus in a bottom-up
attention task

0 msec 400 msec 1300 msec
cue onset cue off test stimuli on

time relative to trial start

post stimulus
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How to detect significantly strong interactions?

test stimuli

500-800msec

« Estimated connectivity from
multiunit activity from UTAH
electrode array (in monkey V1) TR Trees ot
from Alex Thiele (U Newcastle)

* Visual stimulus in a bottom-up
attention task

0 msec 400 msec 1300 msec
cue onset cue off test stimuli on

pOSt stimulus post Stimu|us time relative to trial start

-
5
10
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c
c
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]
-
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]
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www.biorxiv.org/content/early/2017/06/26/100669
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Theoretical study with synthetic networks

A MVAR process
(noise-diffusion network) simulated time series

i /\/J\
m— JL[\LV”'\' el Granger

causality

5l O T T P B e

Generative model: multivariate
autoregressive model (linear
feedback with discrete time)
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Parametric testing for Granger causality
analysis

Autoregression
from observed
time series

Residual (L
noise €\
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Parametric testing for Granger causality
analysis

Autoregression
from observed

time series
Residual ,2§t§T|”1§t§T—1 o Is X, yseful to
noise E('"L?l L - predict x.?
t
X
L " . ,B2§t§T|x1gth—1 ‘
og ratio - [ i _
g GRU.(LLJ - J/'L) . ,E2§t§T|,E1§tST_1 T \
A =00
F test for ¢(a, 1,T — 3) t-1 t-1
significance lexp(GRu;;) — 1] > ’T’T X, X
(T samples)
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Non-parametric test for estimated MVAR
coefs?

(noise-diffusion network) simulated time series

AN
m— JL[\LV”'\' qGranger

causality

5l O T T P B e

empirical covariances

Maximum likelihood estimate
obtained from covariances
(simpler than continuous time)

18



Shuffling the observed s
" - original g [N :
time series (,W F N
shuffled 213465
time v\

Surrogate-MVAR distribution

« Destroys covariance structure to *
build surrogate

e Distribution of estimated MVAR
coefficients for absent . DI e
connections (blue) is matched by | voue source ndex
surrogate distribution (black)

normalized count
target index

control of false alarms

19



Local versus global gty
surrogate distribution K& </w >

shuffled 213465 _ " T
i 70 1
time \/\ source index

Detection test for
individual connections

target index

Surrogate-MVAR distribution
40

 Local: each connection has its
surrogate distribution

o
o
3
o
19

°
9]

N

©
IS
£
)
c

* Global: pooling all surrogate
matrix elements

0 ' 0 L
—0.03 0.00 0.03 . 0.00
estimated value estimated value

local/global significance threshold
(p=0.01 & 1%-tail of the distribution)
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Local versus global
surrogate distribution

 Local: each connection has its
surrogate distribution

* Global: pooling all surrogate
matrix elements

« false alarm: wrong detection
of absent connection

network with N=100 nodes and 5-30%

density: 1% false alarms corresponds
to 70-95 connections!

A random permutation

original

normalized count

of time series

123456
time (’\N *

shuffled 213465

time \/\

Surrogate-MVAR distribution

EY
o

w
o

N
o

=
o

o ke
—0.03 0.00

0.03

estimated value

false-alarm rate (%)

% tail

target index

surrogate covariances

source index

Detection test for
individual connections

N w B (6]
o o o o

normalized count

=
o o

0.00
estimated value

loc50
T locl00
H loc200

T loca00
T globs0
T glob4oo
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Local versus global
surrogate distribution

 Local: each connection has its
surrogate distribution

* Global: pooling all surrogate
matrix elements

« false alarm: wrong detection
of absent connection

* miss: fail to detect existing
connection

A

original

shuffled

normalized count

random permutation surrogate covariances
of time series

target index

123456
time (’\N *
213465

time
\/\ source index

Detection test for

Surrogate-MVAR distribution individual connections

0 ' 0 L
—0.03 0.00 0.03 . —-0.03 0.00
estimated value estimated value

miss rate

loc50

— Ioc400

05 l — globs0
' glob400

lI || I le

smallw medw large w

50 versus 400 surrogates
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Local versus global gty
surrogate distribution K& </w >

shuffled X 213465 i R
time \/\ source index

B s MVAR distributi Detection test for
urrogate- Istribution individual connections

target index

 Local: each connection has its
surrogate distribution

normalized count

* Global: pooling all surrogate
matrix elements

0 ' 0 L
—0.03 0.00 0.03 . —-0.03 0.00
estimated value estimated value

With local test, more surrogates
(darker red) reduce the miss rate
(especially for small weights, left
violin plots)

miss rate

loc50

— locl00

— loc200

' — loc400

smallw medw largew
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Comparison with Granger causality analysis

 Local test (red) and global test (gray)

« Comparison with conditional Granger
causality analysis:
- parametric test (reference in B, zero
on y-axis)
- non-parametric test (green)

X
o+~
c
)]
=
[
>
[@]
—
Q.
£
(]
]
(1]
|-
7))
w
S

100 200 400
number of surrogates S

« Local test always better for S>100 surrogates

« Conditional Granger causality analysis doesn't work
well in network with redundant information
(Stramaglia et al. 2014)

- high feedback due to density
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For the considered dense networks,
estimated MVAR coefficients are
better aligned with the original
weights (Spearman correlation)

« Blue: unconditional Granger residuals
« Cyan: conditional Granger residuals
 Red: MVAR coefficients

Match estimate - original A

o
O
>
=
c
©
E
©
]
o
9]

1000 3000 10000
observed samples T
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Summary for detection of significant
connections

A Influence of local topology

Surrogates generated by shuffling observed time self C¢
series can be used to perform statistical testing for \ jumdirecﬂonal
MVAR estimates

Robust to network topology, works with 2nd-order
MVAR

B Modular network

Computational cost is reasonable

C Hierarchical network

Future Work: N center N
. . . . *.«.—»GI
Also: better characterize what information is .ntermed.ate*.') _

extracted from MUAe (monkey data) <A

www.biorxiv.org/content/early/2017/06/26/100669
(accepted in Network Neuroscience)
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How to make sense of the multiple superposed
paths for the network dynamics?
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Communicability for graphs
(structure—function)

e Measures indirect interactions

* Involves both shortest paths and longer paths (Estrada and
Hatano 2008)

number of paths between i and k of
lengths 1, 2, 3, etc. from adjacency
matrix A:

Ay (A, (A,

28



Communicability for graphs
(structure—function)

e Measures indirect interactions

* Involves both shortest paths and longer paths (Estrada and

Hatano 2008)

decay for longer paths

from i to k: (eA)ki

29



Communicability for static networks

Initially used to detect
communities in undirected
graphs

- communicability for pairs

of nodes as a function of
their degrees (k , k)

Estrada and Hatano 2008

30



Communicability for static

Also used to relate brain
structure to function

- anatomical (DTI) -
functional (fMRI)
connectivity

Bettinardi, Deco, Zamora-
Lépez et al., Chaos (2017)

networks

' 31



Communicability for static networks

« Also used to relate brain
structure to function

- anatomical (DTI) -
functional (fMRI)
connectivity

Bettinardi, Deco, Zamora-
Lépez et al., Chaos (2017)



Formal relationship with noise-diffusion model

multivariate Ornstein-Uhlenbeck process

dx=(==+ Cx)dt+ dW

\

« Effective connectivity matrix C (transition matrix)
« Decay time constant T
« Wiener process W (white noise)

=
\
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Formal relationship with noise-diffusion model

multivariate Ornstein-Uhlenbeck process

dx=(==+Cx)dt +dW

« Effective connectivity matrix C (transition matrix)
« Decay time constant T

« Wiener process W (white noise)

* Jacobian ] = propagator of dynamics

Forward equation to predict future state:

34



Formal relationship with noise-diffusion model

multivariate Ornstein-Uhlenbeck process

e EC ~ transition matrix

« Matrix exponential is Green
function of network dynamics

« Estrada and Hatano (2008):
static viewpoint (t=1)

condition .



Dynamic communicability for
noise-diffusion network

Comparison to null model

. ul n — —
with no connectivity (only y::f:mcomm:;l”ty -
local dynamics) i‘_’g

4

3

2

1

K tlmet

B Sum over connections:

network communicability
0.5

0 -
0 10 20 30 40
time

Jacobian
for null
model
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Time-dependent analysis of communicability

Network ¢
communicability Zij Kl-j global

Input

communicability Integrating

Output

communicability broadcasting

Dynamic communicability

early middle late

tlmet
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« Open loop < closed loops

Quantification of network feedback

A Network topology

Py
5
©
O
€ 0.2
]
€
IS
o
o

¥
o
=
(]
=
0.0
e 1 G o=

time

40
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Quantification of network feedback

— open chain

— unidir loop

— sym loop
-+ unbal loop

A Network topol
Open loop < closed loops b

Dynamic communicability i i i:z

captures heterogeneities

between nodes g:g i:i
B

Node specificity

network communicability

homogeneous loop heterogeneous loop
input input
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Quantification of network feedback

. Open loop < closed loops A Network topology

« Dynamic communicability E z I:I

captures heterogeneities
between nodes

— open chain
— unidir loop
— sym loop

-+ unbal loop

network communicability

« Homogenization over time m I:I

Node specificity

homogeneous loop heterogeneous loop

. TF . input input
C Match between communicability and weight e communicability

t=1 t=4 t=10

S
o
B

>
E
©
L
S 0.02
£
£
@]
(&)

0.00
0.0 02 04 0.0 0.2 04 0.0 0.2 04

C weight

40



Application to resting-state fMRI

Data from JF Mangin
(Neurospin)

57 subjects
AAL9O parcellation
TR = 2 seconds

Strong network effect
(long lasting)

- close to criticality
Input-output

heterogeneities across
nodes

- e.g., precuneus listens
but does not broadcast

time (TR)

EC asymmetry

output weight sum

input weight sum

Output communicability

time (TR)
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From segregated to global integration

Panel B: 4 communities
detected from EC weights
using the Louvain method
(Newman modularity)

Communicability initially
Increases within
communities, then spreads
(cf. off-diagonal blocks)

- link with Laplacian-flow to
detect communities
(Rosvall and Bergstrom;
Lambiotte, Bahorona)

communicability

communicability

EC - communicability match (all ROI pairs) B EC-based communities

u
o

w
[0}

o
g

o
u

t=1TR

(reordered indices)
t=14TR

u
e

communicability

communicability

0.00 0.05
EC weight

Comminicability (reordered indices)

t=14TR
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Summary for dynamic communicability

« It quantifies network interactions across time

« Time-dependent measures (e.g., to compare distinct conditions)

- global network effect
- integration and broadcast strengths for each node

- segregated - global integration (community merging over time)

« Definition of flow to take the input statistics (variances) into
account in the noise-diffusion process

A Noise diffusion in the network
individual input N\N\

cross-correlated , P %
input l
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Conclusions

We aim to develop an analysis framework for complex
network dynamics estimated from data (e.g., fMRI, MUAe)

- extend graph theory for static network
- beyond mean-field approaches for dynamic systems

- adequate statistical tests

Code for EC estimation available online (matthieugilson.eu)
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