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Analysis of whole-brain effective connectivity

DTI

Effective connectivity ~ signature of brain dynamics 
(related to transitions of BOLD activity between ROIs)
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Analysis of whole-brain effective connectivity

Matrix of effective connectivity:
● Changes across conditions

www.biorxiv.org/content/early/2017/08/25/110015
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Analysis of whole-brain effective connectivity

Matrix of effective connectivity:
● Changes across conditions
● Important and strong links

Weight significantly different from 0

~ Granger causality analysis



5
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How to make sense of the 
multiple superposed paths 
for the network dynamics?

Matrix of effective connectivity:
● Changes across conditions
● Important and strong links
● Network effect

Analysis of whole-brain effective connectivity
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Outline

● Non-parametric method to evaluate significance of estimated 
weights
– multivariate autoregressive process (discrete time)

– www.biorxiv.org/content/early/2017/06/26/100669

● Communicability to quantify network effect 
– multivariate Ornstein-Uhlenbeck process (continuous time)
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How to detect significantly strong interactions?

● Estimated connectivity from 
multiunit activity from UTAH 
electrode array (in monkey V1) 
from Alex Thiele (U Newcastle)

● Visual stimulus in a bottom-up 
attention task

www.biorxiv.org/content/early/2017/06/26/100669

trial #1

trial #2

average over 
200 trials
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How to detect significantly strong interactions?

www.biorxiv.org/content/early/2017/06/26/100669

● Estimated connectivity from 
multiunit activity from UTAH 
electrode array (in monkey V1) 
from Alex Thiele (U Newcastle)

● Visual stimulus in a bottom-up 
attention task
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Theoretical study with synthetic networks 

Generative model: multivariate 
autoregressive model (linear 
feedback with discrete time)
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Parametric testing for Granger causality 
analysis

Residual 
noise

Autoregression 
from observed 
time series
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Parametric testing for Granger causality 
analysis

Residual 
noise

Log ratio

xi
t

xi
t-1 xj

t-1

Is xj useful to 
predict xi?

F test for 
significance 
(T samples)

Autoregression 
from observed 
time series
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Non-parametric test for estimated MVAR 
coefs?

Maximum likelihood estimate 
obtained from covariances 
(simpler than continuous time)
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Shuffling the observed 
time series

● Destroys covariance structure to 
build surrogate

● Distribution of estimated MVAR 
coefficients for absent 
connections (blue) is matched by 
surrogate distribution (black)

control of false alarms
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Local versus global 
surrogate distribution

● Local: each connection has its 
surrogate distribution

● Global: pooling all surrogate 
matrix elements

local/global significance threshold 
(p=0.01 ↔ 1%-tail of the distribution)
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Local versus global 
surrogate distribution

● Local: each connection has its 
surrogate distribution

● Global: pooling all surrogate 
matrix elements

● false alarm: wrong detection 
of absent connection

network with N=100 nodes and 5-30% 
density: 1% false alarms corresponds 
to 70-95 connections!
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Local versus global 
surrogate distribution

● Local: each connection has its 
surrogate distribution

● Global: pooling all surrogate 
matrix elements

● false alarm: wrong detection 
of absent connection

● miss: fail to detect existing 
connection

50 versus 400 surrogates
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Local versus global 
surrogate distribution

With local test, more surrogates 
(darker red) reduce the miss rate 
(especially for small weights, left 
violin plots)

● Local: each connection has its 
surrogate distribution

● Global: pooling all surrogate 
matrix elements
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Comparison with Granger causality analysis

● Local test (red) and global test (gray)
● Comparison with conditional Granger 

causality analysis:
– parametric test (reference in B, zero 

on y-axis)
– non-parametric test (green)

● Local test always better for S>100 surrogates
● Conditional Granger causality analysis doesn't work 

well in network with redundant information 
(Stramaglia et al. 2014)
– high feedback due to density
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For the considered dense networks, 
estimated MVAR coefficients are 
better aligned with the original 
weights (Spearman correlation) 

● Blue: unconditional Granger residuals
● Cyan: conditional Granger residuals
● Red: MVAR coefficients
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Summary for detection of significant 
connections

● Surrogates generated by shuffling observed time 
series can be used to perform statistical testing for 
MVAR estimates

● Robust to network topology, works with 2nd-order 
MVAR

● Computational cost is reasonable

● Future work: 

● Also: better characterize what information is 
extracted from MUAe (monkey data)

www.biorxiv.org/content/early/2017/06/26/100669
(accepted in Network Neuroscience)
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How to make sense of the multiple superposed 
paths for the network dynamics?
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Communicability for graphs 
(structure→function)
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A ik ,(A
2
)ik ,(A

3
)ik , .. .

number of paths between i and k of 
lengths 1, 2, 3, etc. from adjacency 
matrix A:

● Measures indirect interactions
● Involves both shortest paths and longer paths (Estrada and 

Hatano 2008)
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Communicability for graphs 
(structure→function)

e A
=1+

A
1!

+
A2

2!
+

A3

3 !
+.. .

i

j

k

l
(eA

)kifrom i to k:

decay for longer paths

● Measures indirect interactions
● Involves both shortest paths and longer paths (Estrada and 

Hatano 2008)
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Communicability for static networks

Estrada and Hatano 2008

● Initially used to detect 
communities in undirected 
graphs
– communicability for pairs 

of nodes as a function of 
their degrees (kp, kq)
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Communicability for static networks

● Initially used to detect 
communities in undirected 
graphs
– communicability for pairs 

of nodes as a function of 
their degrees (kp, kq)

● Also used to relate brain 
structure to function
– anatomical (DTI) → 

functional (fMRI) 
connectivity

Bettinardi, Deco, Zamora-
López et al., Chaos (2017)

DTI

fMRI
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Formal relationship with noise-diffusion model

dx=(
−x
τ + Cx)dt+ dW

multivariate Ornstein-Uhlenbeck process

● Effective connectivity matrix C (transition matrix)
● Decay time constant τ
● Wiener process W (white noise)

W
i

W
j

i

j

k
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Formal relationship with noise-diffusion model

dx=(
−x
τ +Cx)dt+dW

multivariate Ornstein-Uhlenbeck process

● Effective connectivity matrix C (transition matrix)
● Decay time constant τ
● Wiener process W (white noise)
● Jacobian J = propagator of dynamics

W
i

W
j

i

j

k

x (t )=eJ t x (0)+∫0

t
eJ (t−s)dW (s)

J ij=
−δij
τ +C ij

Forward equation to predict future state:
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Formal relationship with noise-diffusion model
multivariate Ornstein-Uhlenbeck process

W
i

W
j

i

j

k

J ij=
−δij
τ +C ij

time

(eJ t
)ki

initial
condition

● EC ~ transition matrix
● Matrix exponential is Green 

function of network dynamics
● Estrada and Hatano (2008): 

static viewpoint (t=1)
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Dynamic communicability for
noise-diffusion network

Comparison to null model 
with no connectivity (only 
local dynamics)

K t
=

e J t
−e J 0 t

∥(J 0
)
−1
∥

J ij=
−δij
τ +C ij

J ij
0
=

−δij
τ

Jacobian 
for null 
model
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Network 
communicability global

Input 
communicability integrating

Output 
communicability

broadcasting

Time-dependent analysis of communicability 

∑ j
K ij

t

∑ij
K ij

t

∑i
K ij

t
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Quantification of network feedback

● Open loop < closed loops
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Quantification of network feedback

● Open loop < closed loops
● Dynamic communicability 

captures heterogeneities 
between nodes
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Quantification of network feedback

● Open loop < closed loops
● Dynamic communicability 

captures heterogeneities 
between nodes

● Homogenization over time
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Application to resting-state fMRI

● Data from JF Mangin 
(Neurospin)

● 57 subjects
● AAL90 parcellation
● TR = 2 seconds

● Strong network effect 
(long lasting)
– close to criticality

● Input-output 
heterogeneities across 
nodes
– e.g., precuneus listens 

but does not broadcast
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From segregated to global integration

● Panel B: 4 communities 
detected from EC weights 
using the Louvain method 
(Newman modularity)

● Communicability initially 
increases  within 
communities, then spreads 
(cf. off-diagonal blocks)
– link with Laplacian-flow to 

detect communities 
(Rosvall and Bergstrom; 
Lambiotte, Bahorona)
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Summary for dynamic communicability

● It quantifies network interactions across time

● Time-dependent measures (e.g., to compare distinct conditions)

– global network effect

– integration and broadcast strengths for each node

– segregated → global integration (community merging over time)

● Definition of flow to take the input statistics (variances) into 
account in the noise-diffusion process
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Conclusions

● We aim to develop an analysis framework for complex 
network dynamics estimated from data (e.g., fMRI, MUAe)

– extend graph theory for static network

– beyond mean-field approaches for dynamic systems

– adequate statistical tests

● Code for EC estimation available online (matthieugilson.eu)
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