PREPRINTS
-
Insabato A, Cunningham JP, Gilson M
Bayesian estimation for large scale multivariate Ornstein-Uhlenbeck model of brain connectivity.
arxiv preprint
-
Benitez-Stulz S, Insabato A, Deco G, Gilson M, Senden M
Comparing Task-Relevant Information Across Different Methods of Extracting Functional Connectivity.
biorxiv preprint
-
Lawrie S, Moreno-Bote R, Gilson M
Covariance-based information processing in reservoir computing systems.
biorxiv preprint
-
Cos I, Deco G, Gilson M
The Influence of Intrinsic Motivation on Decisions Between Actions.
preprint
-
Allegra M, Gilson M**, Brovelli A**
Directed neural interactions in fMRI: a comparison between Granger Causality and Effective Connectivity.
biorxiv preprint
PEER-REVIEWED JOURNAL ARTICLES
*/** equal contribution
-
Burkitt AN, Gilson M, van Hemmen JL (2007)
Spike-timing-dependent plasticity for neurons with recurrent connections.
Biol Cybern 96: 533-546;
doi: 10.1007/s00422-007-0148-2
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks I: Input selectivity - strengthening correlated input pathways.
Biol Cybern 101: 81-102;
doi: 10.1007/s00422-009-0319-4
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks II: Input selectivity - symmetry breaking.
Biol Cybern 101: 103-114;
doi: 10.1007/s00422-009-0320-y
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
Biol Cybern 101: 411-426;
doi: 10.1007/s00422-009-0343-4
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: Structuring synaptic pathways among recurrent connections.
Biol Cybern 101: 427-444;
doi: 10.1007/s00422-009-0346-1
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2010)
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
Biol Cybern 103: 365-386;
doi: 10.1007/s00422-010-0405-7
-
Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2010)
Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
Phys Rev E 82: 021912;
doi: 10.1103/PhysRevE.82.021912
-
Gilson M, Burkitt AN, van Hemmen JL (2010)
STDP in recurrent neuronal networks.
Front Comput Neurosci 4: 23;
doi: 10.3389/fncom.2010.00023
-
Gilson M, Fukai T (2011)
Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma.
PLoS ONE 6: e25339;
doi: 10.1371/journal.pone.0025339
-
Gilson M*, Masquelier T*, Hugues E (2011)
STDP allows fast rate-modulated coding with Poisson-like spike trains.
PLoS Comput Biol 7: e1002231;
doi: 10.1371/journal.pcbi.1002231
-
Gilson M*, Bürck M*, Burkitt AN, van Hemmen JL (2012)
Frequency Selectivity Emerging from Spike-Timing-Dependent Plasticity.
Neural Comput 24: 2251-2279;
doi: 10.1162/NECO_a_00331
-
Gilson M, Fukai T, Burkitt AN (2012)
Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity.
PLoS Comput Biol 8: e1002584;
doi: 10.1371/journal.pcbi.1002584
-
Kerr RR, Burkitt AN, Thomas DA, Gilson M, Grayden DB (2013)
Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs.
PLoS Comput Biol 9: e1002897;
doi: 10.1371/journal.pcbi.1002897
-
Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H (2013)
Inhibitory synaptic plasticity: spike timing-dependence and putative network function.
Front Neural Circuits 7: 119;
doi: 10.3389/fncir.2013.00119
-
Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN (2014)
Coexistence of reward and unsupervised learning during the operant conditioning of neural firing rates.
PLoS ONE 9: e87123;
doi: 10.1371/journal.pone.0087123
-
Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN (2014)
Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence.
Front Neural Circuits 8: 94;
doi: 10.3389/fncir.2014.00094
-
Kleberg FI, Fukai T, Gilson M (2014)
Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity.
Front Comput Neurosci 8: 53;
doi: 10.3389/fncom.2014.00053
-
Borovkov K, Decrouez G, Gilson M (2014)
On stationary distributions of stochastic neural networks.
J Appl Probab 51: 837-857;
doi: 10.1239/jap/1409932677
-
Yger P, Gilson M (2015)
Models of metaplasticity: a review of concepts.
Front Comput Neurosci 9: 138;
doi: 10.3389/fncom.2015.00138
-
Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G (2016)
Estimation of directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
PLoS Comput Biol 12: e1004762;
doi: 10.1371/journal.pcbi.1004762
-
Gilson M*, Tauste Campo A*, Chen X, Thiele A, Deco G (2017)
Non-parametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data.
Netw Neurosci 1: 357-380;
doi: 10.1162/NETN_a_00019
-
Glomb K, Ponce-Alvarez A, Gilson M, Ritter P, Deco G (2017)
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage 159: 388-402
doi: 10.1016/j.neuroimage.2017.07.065
-
Rolls ET*, Cheng W*, Gilson M*, Qiu J*, Hu Z*, Ruan H, Li Y, Huang C-C, Yang AC, Tsai S-J, Zhang X, Zhuang K, Lin C-P, Deco G, Xie P, Feng J (2018)
Effective connectivity in depression.
Biol Psychiatry CNNI 3: 187-197;
doi: 10.1016/j.bpsc.2017.10.004
-
Gilson M (2018)
Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.
Biol Cybern 112: 153-161;
doi: 10.1007/s00422-017-0741-y; biorxiv preprint
-
Senden M*, Reuter N*, van den Heuvel M, Goebel R, Deco G, Gilson M (2018)
Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication.
Hum Brain Mapp 39: 1246-1262;
doi: 10.1002/hbm.23913; biorxiv preprint
-
Glomb K, Ponce-Alvarez A, Gilson M, Ritter P, Deco G (2018)
Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance.
Neuroimage 171: 40-54;
doi: 10.1016/j.neuroimage.2017.12.074
-
Pallarés V*, Insabato A*, Sanjuán A, Kühn S, Mantini D, Deco G**, Gilson M** (2018)
Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity.
Neuroimage 178: 238-254;
doi: 10.1016/j.neuroimage.2018.04.070
-
Gilson M, Deco G, Friston K, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M (2018)
Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions.
Neuroimage 180: 534-546;
doi: 10.1016/j.neuroimage.2017.09.061
-
Gilson M, Kouvaris NE, Deco G, Zamora-López G (2018)
Framework based on communicability and flow to analyze complex network dynamics.
Phys Rev E 97: 052301;
doi: 10.1103/PhysRevE.97.052301; arxiv preprint
-
Demirtaş M, Ponce-Alvarez A, Gilson M, Hagmann P, Mantini D, Betti V, Romani GL, Friston K, Corbetta M, Deco G (2019)
Distinct modes of functional connectivity induced by movie-watching.
Neuroimage 184: 335-348; doi: 10.1016/j.neuroimage.2018.09.042
-
Gilson M, Kouvaris NE, Deco G, Mangin J-F, Poupon C, Lefranc S, Rivière D, Zamora-López G (2019)
Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
Neuroimage 201: 116007; doi: 10.1016/j.neuroimage.2019.116007; biorxiv preprint
-
Rolls ET, Zhou Y, Cheng W, Gilson M, Deco G, Feng J (2020)
Effective connectivity in autism.
Autism Res 13: 32-44; doi: 10.1002/aur.2235
-
Rolls ET, Cheng W, Gilson M, Gong W, Deco G, Lo CZ, Yang AC, Tsai SJ, Liu ME, Lin CP, Feng J (2020)
Beyond the disconnectivity hypothesis of schizophrenia.
Cereb Cortex 30: 1213-1233; doi: 10.1093/cercor/bhz161
-
Gilson M, Zamora-López G, Pallarés V, Adhikari MH, Senden M, Tauste Campo A, Mantini D, Corbetta M, Deco G, Insabato A (2020)
Model-based whole-brain effective connectivity to study distributed cognition in health and disease.
Netw Neurosci 4: 338-373; doi: 10.1162/netn_a_00117
-
Gravel N, Renken RJ, Harvey BM, Deco G, Cornelissen FW, Gilson M (2020)
Propagation of BOLD activity reveals directed interactions across human visual cortex.
Cereb Cortex 30: 5899–5914; doi: 10.1093/cercor/bhaa165; biorxiv preprint
-
Gilson M, Pfister J-P (2020)
Propagation of moments in Hawkes networks.
SIAM J Appl Dyn Syst 19: 828–859; doi: 10.1137/18M1220030
-
Gilson M*, Dahmen D*, Moreno-Bote R, Insabato A, Helias M (2020)
The covariance perceptron: A new framework for classification and processing of time series in recurrent neural networks.
PLoS Comput Biol 16: e1008127; doi: 10.1371/journal.pcbi.1008127
-
Dahmen D, Gilson M**, Helias M** (2020)
Capacity of the covariance perceptron.
J Phys A 53: 354002; doi: 10.1088/1751-8121/ab82dd
-
Adhikari MH, Griffis J, Siegel JS, Thiebaut de Schotten M, Deco G, Instabato A, Gilson M**, Corbetta M** (2021)
Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke.
Brain Commun 3: fcab233; doi: 10.1093/braincomms/fcab233; medrxiv preprint
-
De Filippi E, Escrichs A, Càmara E, Garrido C, Marins T, Sánchez-Fibla M, Gilson M, Deco G (2022)
Meditation-induced effects on whole-brain structural and effective connectivity.
Brain Struct Funct 227: 2087–2102; doi: 10.1007/s00429-022-02496-9
-
De Filippi E, Marins T, Escrichs A, Gilson M, Moll J, Tovar-Moll F, Deco G (2022)
One session of fMRI-Neurofeedback training on motor imagery modulates whole-brain effective connectivity and dynamical complexity.
Cereb Cortex Commun 3: tgac027; doi: 10.1093/texcom/tgac027
-
Kobeleva X, Varoquaux G, Dagher A, Adhikari M, Grefkes CC, Gilson M (2022)
Advancing brain network models to reconcile functional neuroimaging and clinical research.
Neuroimage Clin 36: 103262; doi: 10.1016/j.nicl.2022.103262; psyarxiv preprint
-
Gilson M, Tagliazucchi E, Cofré R (2023)
Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain.
Phys Rev E 107: 024121; doi: 10.1103/PhysRevE.107.024121
-
Panda R, López-González A, Gilson M, Gosseries O, Thibaut A, Frasso G, Cecconi B, Escrichs A, GIGA group collaborators, Deco G, Laureys S, Zamora-López G, Annen J (2023)
Whole‐brain analyses indicate the impairment of posterior integration and thalamo‐frontotemporal broadcasting in disorders of consciousness.
Hum Brain Mapp 44: 4352–4371; doi: 10.1002/hbm.26386
-
Nestler S, Helias M**, Gilson M** (2023)
Neuronal architecture extracts statistical temporal patterns.
Phys Rev Res 5: 033177; doi: 10.1103/PhysRevResearch.5.033177
-
Zamora-López G, Gilson M (2024)
An integrative dynamical perspective for graph theory and the study of complex networks.
Chaos 34: 041501; doi: d10.1063/5.0202241; arxiv preprint
PEER-REVIEWED CONFERENCE ARTICLES
-
Nestler S, Keup C, Dahmen D, Gilson M, Rauhut H, Helias M (2020)
Unfolding recurrence by Green's functions for optimized reservoir computing.
NeurIPS; link to proceedings arxiv preprint
-
Lawrie S, Moreno-Bote R, Gilson M (2022)
Covariance features improve low-resource reservoir computing performance in multivariate time series classification.
5th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2021)
BOOK CHAPTERS
-
Insabato A, Deco G, Gilson M (2019)
Imaging Connectomics and the Understanding of Brain Diseases.
in Adv Exp Med Biol; 1192: 139-158; doi: 10.1007/978-981-32-9721-0_8