ARTICLES

  1. Burkitt AN, Gilson M, van Hemmen JL (2007)
    Spike-timing-dependent plasticity for neurons with recurrent connections. Biol Cybern 96: 533-546 doi: 10.1007/s00422-007-0148-2
  2. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
    Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks I: Input selectivity - strengthening correlated input pathways. Biol Cybern 101: 81-102 doi: 10.1007/s00422-009-0319-4
  3. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
    Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks II: Input selectivity - symmetry breaking. Biol Cybern 101: 103-114 doi: 10.1007/s00422-009-0320-y
  4. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
    Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity. Biol Cybern 101: 411-426 doi: 10.1007/s00422-009-0343-4
  5. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009)
    Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: Structuring synaptic pathways among recurrent connections. Biol Cybern 101: 427-444 doi: 10.1007/s00422-009-0346-1
  6. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2010)
    Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence. Biol Cybern 103: 365-386 doi: 10.1103/PhysRevE.82.021912
  7. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2010)
    Representation of input structure in synaptic weights by spike-timing-dependent plasticity. Phys Rev E 82: 021912 doi:
  8. Gilson M, Burkitt AN, van Hemmen JL (2010)
    STDP in recurrent neuronal networks. Front Comput Neurosci 4: 23 doi: 10.3389/fncom.2010.00023
  9. Gilson M, Fukai T (2011)
    Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma. PLoS ONE 6: e25339 doi: 10.1371/journal.pone.0025339
  10. Gilson M*, Masquelier T*, Hugues E (2011)
    STDP allows fast rate-modulated coding with Poisson-like spike trains. PLoS Comput Biol 7: e1002231 doi: 10.1371/journal.pcbi.1002231
  11. Gilson M*, Bürck M*, Burkitt AN, van Hemmen JL (2012)
    Frequency Selectivity Emerging from Spike-Timing-Dependent Plasticity. Neural Comput 24: 2251-2279 doi: 10.1162/NECO_a_00331
  12. Gilson M, Fukai T, Burkitt AN (2012)
    Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity. PLoS Comput Biol 8: e1002584 doi: 10.1371/journal.pcbi.1002584
  13. Kerr RR, Burkitt AN, Thomas DA, Gilson M, Grayden DB (2013)
    Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs. PLoS Comput Biol 9: e1002897 doi: 10.1371/journal.pcbi.1002897
  14. Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H (2013)
    Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7: 119 doi: 10.3389/fncir.2013.00119
  15. Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN (2014)
    Coexistence of reward and unsupervised learning during the operant conditioning of neural firing rates. PLoS ONE 9: e87123 doi: 10.1371/journal.pone.0087123
  16. Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN (2014)
    Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence. Front Neural Circuits 8: 94 doi: 10.3389/fncir.2014.00094
  17. Kleberg FI, Fukai T, Gilson M (2014)
    Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity. Front Comput Neurosci 8: 53 doi: 10.3389/fncom.2014.00053
  18. Borovkov K, Decrouez G, Gilson M (2014)
    On stationary distributions of stochastic neural networks. J Appl Probab 51: 837-857 doi: 10.1239/jap/1409932677
  19. Yger P, Gilson M (2015)
    Models of metaplasticity: a review of concepts. Front Comput Neurosci 9: 138 doi: 10.3389/fncom.2015.00138
  20. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G (2016)
    Estimation of directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. PLoS Comput Biol 12: e1004762 doi: 10.1371/journal.pcbi.1004762
  21. Gilson M*, Tauste Campo A*, Chen X, Thiele A, Deco G (in press)
    Non-parametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data. Network Neurosci online first
  22. Gilson M, Deco G, Friston K, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M (in press)
    Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. Neuroimage preprint on biorxiv
  23. Glomb K, Ponce-Alvarez A, Gilson M, Ritter P, Deco G (in press)
    Resting state networks in empirical and simulated dynamic functional connectivity. Neuroimage online first
  24. Rolls ET*, Cheng W*, Gilson M*, Qiu J*, Hu Z*, Ruan H, Li Y, Huang C-C, Yang AC, Tsai S-J, Zhang X, Zhuang K, Lin C-P, Deco G, Xie P, Feng J (in press)
    Effective connectivity in depression. Biol Psychiatry
  25. Glomb K, Ponce-Alvarez A, Gilson M, Ritter P, Deco G (submitted)
    Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance. biorxiv preprint
  26. Senden M*, Reuter N*, van den Heuvel M, Goebel R, Deco G, Gilson M (submitted)
    Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication. biorxiv preprint
  27. Gravel N, Renken RJ, Harvey BM, Deco G, Cornelissen FW, Gilson M (submitted)
    Propagation of BOLD activity reveals directed interactions across human visual cortex. biorxiv preprint
  28. Pallarés V*, Insabato A*, Sanjuán A, Kühn S, Mantini D, Deco G**, Gilson M** (submitted)
    Subject- and behavior-specific signatures extracted from fMRI data using whole-brain effective connectivity. biorxiv preprint

*/** equal contribution